Modeling and Stiffness Optimization

نویسندگان

  • Matija Štrbac
  • Dejan B. Popović
چکیده

We present the procedure for the optimization of the stiffness of the prosthetic foot. The procedure allows the selection of the elements of the foot and the materials used for the design. The procedure is based on the optimization where the cost function is the minimization of the difference between the knee joint torques of healthy walking and the walking with the transfemural prosthesis. We present a simulation environment that allows the user to interactively vary the foot geometry and track the changes in the knee torque that arise from these adjustments. The software allows the estimation of the optimal prosthetic foot elasticity and geometry. We show that altering model attributes such as the length of the elastic foot segment or its elasticity leads to significant changes in the estimated knee torque required for a given trajectory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Utilizing a Secant Stiffness Matrix for 2D Nonlinear Shape Optimization and Sensitivity Analysis

In this article the general non-symmetric parametric form of the incremental secant stiffness matrix for nonlinear analysis of solids have been investigated to present a semi analytical sensitivity analysis approach for geometric nonlinear shape optimization. To approach this aim the analytical formulas of secant stiffness matrix are presented. The models were validated and used to perform inve...

متن کامل

Stiffness Prediction of Beech Wood Flour Polypropylene Composite by using Proper Fiber Orientation Distribution Function

One of the most famous methods to predict the stiffness of short fiber composites is micromechanical modeling. In this study, a Representative Volume Element (RVE) of a beech wood flour natural composite has been designed and the orientation averaging approach has been utilized to predict its stiffness tensor. The novelty of this work is in finding the proper fiber orientation distribution func...

متن کامل

TOPOLOGY OPTIMIZATION OF COMPOSITE MATERIALS WITH OPTIMAL STIFFNESS AND THERMAL CONDUCTIVITY

This paper presents the bidirectional evolutionary structural optimization (BESO) method for the design of two-phase composite materials with optimal properties of stiffness and thermal conductivity. The composite material is modelled by microstructures in a periodical base cell (PBC). The homogenization method is used to derive the effective bulk modulus and thermal conductivity. BESO procedur...

متن کامل

DAMAGE DETECTION OF BRIDGE STRUCTURES IN TIME DOMAIN VIA ENHANCED COLLIDING BODIES OPTIMIZATION

In  this  paper,  a  method  is  presented  for  damage  detection  of  bridges  using  the  Enhanced Colliding Bodies Optimization (ECBO)  utilizing time-domain responses. The finite element modeling of the structure is based on  the equation of motion under the moving load, and the flexural stiffness of the structure is determined by the acceleration responses obtained via sensors placed in d...

متن کامل

Powertrain mounting system optimization to improve vibration behavior for EF7 engine

Improvement and optimization of the Powertrain mounting system are one of the ways to improve the performance NVH cars. The study aims to find the optimal stiffness coefficients for each mount in three directions. The natural frequencies of the system remain steady and stay away from the excitation frequencies, so that the system does not a resonance. It was also, using the decoupling vibration...

متن کامل

Estimating mechanical properties of the heart using dynamic modeling and magnetic resonance imaging

We-pFesent an algorithm for estimating active and passive mechanical properties of the heart using magnetic resonance imaging (MRI) tissue-tagging and blood pressure measurements. We combine physical modeling with a finite-element formulation and dynamic analysis, and apply non-linear optimization to estimate the unknown parameters. We assume that the myocardium's stiffness tensor is anisotropi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014